Step of Proof: lt_int_eq_false_elim
12,41
postcript
pdf
Inference at
*
1
0
I
of proof for Lemma
lt
int
eq
false
elim
:
1.
i
:
2.
j
:
3.
i
<z
j
= ff
(
i
<
j
)
latex
by PERMUTE{1:n, 2:n, 3:n, 1:n, 4:n, 2:n, 5:n, 6:n, 7:n, 8:n, 9:n, 7:n, 6:n, 10:n}
latex
1
: .....wf..... NILNIL
1:
(
i
<z
j
= ff)
2
: .....wf..... NILNIL
2:
(
j
z
i
)
3
: .....wf..... NILNIL
3:
(
j
i
)
4
: .....wf..... NILNIL
4:
(
(
i
<z
j
))
5
: .....wf..... NILNIL
5:
i
<z
j
6
: .....wf..... NILNIL
6:
i
7
: .....wf..... NILNIL
7:
j
8
: .....antecedent..... NILNIL
8:
True
9
: .....wf..... NILNIL
9:
4. (
(
i
<z
j
)) = (
j
z
i
)
9:
=
10
:
10:
3.
j
i
10:
(
i
<
j
)
.
Definitions
x
:
A
B
(
x
)
,
#$n
,
{
x
:
A
|
B
(
x
)}
,
Ax
,
x
.
A
(
x
)
,
Type
,
b
,
i
z
j
,
b
,
f
(
a
)
,
x
:
A
B
(
x
)
,
A
B
,
a
<
b
,
A
,
ff
,
i
<z
j
,
,
s
=
t
,
,
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
&
Q
,
True
,
T
,
t
T
,
P
Q
,
P
Q
Lemmas
assert
of
le
int
,
bnot
of
lt
int
,
bool
wf
,
true
wf
,
squash
wf
,
assert
wf
,
eqff
to
assert
,
iff
transitivity
origin